亚洲综合一区二区高清无码_亚洲尤物视频在线观看_亚洲一级性爱片免费观看_亚洲国产聚色窝

朋友圈

18581508556

全國統(tǒng)一學習專線 9:00-21:00

位置:程序開發(fā)培訓(xùn)班 > 大數(shù)據(jù)開發(fā)培訓(xùn)班 > 西安博為峰大數(shù)據(jù)分析培訓(xùn)班

西安博為峰大數(shù)據(jù)分析培訓(xùn)班

西安博為峰大數(shù)據(jù)分析培訓(xùn)班

授課機構(gòu): 西安博為峰教育

課程價格: 請咨詢客服

開班時間:隨到隨學

上課地址: 請咨詢客服

優(yōu)惠價格: 請咨詢客服

咨詢電話:18581508556

課程介紹

發(fā)布日期:2025-01-22

undefined
西安大數(shù)據(jù)分析培訓(xùn)班
 

西安大數(shù)據(jù)分析培訓(xùn)班,在杭州學大數(shù)據(jù)分析推薦西安博為峰教育。博為峰大數(shù)據(jù)分析培訓(xùn)課程通過線上線下、直播錄播與平臺結(jié)合的方式,讓您在業(yè)務(wù)數(shù)據(jù)分析、計算機編程、數(shù)據(jù)挖掘/機器學習算法上獲得全面提升:從基礎(chǔ)的數(shù)據(jù)分析理論方法到需備的數(shù)據(jù)分析算法,再到流行的數(shù)據(jù)可視化技術(shù)以及基于Python的數(shù)據(jù)分析語言,直至時下熱門的大數(shù)據(jù)分析技術(shù)。

超全棧開發(fā)工程師具有非常深厚扎實的軟件開發(fā)基礎(chǔ),可以持續(xù)進階自己的技術(shù)能力、不斷拓展自己的職業(yè)方
向,不管是技術(shù)線、管理線,甚至是業(yè)務(wù)線,相信都能游刃有余。


—— 大數(shù)據(jù)分析和數(shù)據(jù)分析師的含義——


  • 培養(yǎng)目標 什么是大數(shù)據(jù)分析 icon

    隨著大數(shù)據(jù)(BIG DATA)時代的來臨,數(shù)據(jù)倉庫、數(shù)據(jù)安全、數(shù)據(jù)分析、數(shù)據(jù)挖掘等圍繞大數(shù)據(jù)的商業(yè)價值利用,逐漸成為企業(yè)和資本爭相追捧的焦點。商業(yè)大數(shù)據(jù)分析,是指通過技術(shù)和數(shù)據(jù)分析工具對規(guī)模巨大的商業(yè)數(shù)據(jù)進行多維度分析,洞悉用戶屬性特征和行為習慣,挖掘用戶個性化需求,預(yù)測業(yè)務(wù)狀況,改進決策流程,并通過自動化流程實現(xiàn)用戶交互。

  • 就業(yè)方向 數(shù)據(jù)分析師含義 icon

    數(shù)據(jù)分析師是指專門從事數(shù)據(jù)搜集、整理、 分析,并依據(jù)數(shù)據(jù)做出行業(yè)研究、評估和預(yù)測的專業(yè)人員。阿里巴巴研究員薛貴榮曾表示,"數(shù)據(jù)分析師就是一群玩數(shù)據(jù)的人,玩出數(shù)據(jù)的商業(yè)價值,讓數(shù)據(jù)變成生產(chǎn)力。


——西安大數(shù)據(jù)分析培訓(xùn)哪家機構(gòu)好,博為峰教學特點 ——


01
學掌門

學掌門(Atstudy.com)是博為峰旗下的在線IT職業(yè)教育平臺,目前已推出眾多內(nèi)容優(yōu)質(zhì)、生動實用 的各類IT培訓(xùn)課程,利用在線學習的便捷性,著重加 強IT項目實戰(zhàn)技能,結(jié)合在線答疑、實時筆記、在線 題庫及考試等教學輔助功能,滿足學習者從零基礎(chǔ)起 步直至IT崗位的技能所需,以匹配個人提升或企 業(yè)用人需求。Atstudy個性化的教學和學習形式,有助 于實現(xiàn)真正意義上的因材施教效果。

02
博為峰

博為峰,全稱上海博為峰軟件技術(shù)股份有限公司,成 立于2004年,是*IT職業(yè)人才培訓(xùn)領(lǐng)域的先行者,公司 總部位于上海,在北京、成都、南京、西 安、武漢、杭州、重慶、濟南、合肥、蘇州、長沙、南 昌、石家莊、鄭州、昆山等地均設(shè)有校區(qū)和分支服務(wù)機 構(gòu)。2016年4月,博為峰在新三板掛牌上市(股票代碼: 836392,2020年4月入選創(chuàng)新層),成為備受矚目的創(chuàng)新 型IT企業(yè)

  • undefined
  • 西安數(shù)據(jù)分析培訓(xùn)就業(yè)
    西安數(shù)據(jù)分析培訓(xùn)就業(yè)班,該課程學員不論您是應(yīng)/往屆畢業(yè)生還是在職上班族,無論您是否計算機相關(guān)專業(yè)畢業(yè),參加學掌門【超全棧開發(fā)就業(yè)培 訓(xùn)】,我們都將幫您奠定堅實的職業(yè)基礎(chǔ),助您踏入發(fā)展前景廣闊的超全棧開發(fā)領(lǐng)域,加上持續(xù)不斷的努力,相信 您將得到更好的職位、更高的待遇、更快的晉升,直至實現(xiàn)您的夢想。


—— 西安大數(shù)據(jù)分析培訓(xùn)哪家機構(gòu)好?博為峰的六大教學服務(wù) ——
教學定制 01
入學一對一能力評估,定制個人專屬學習方案
教學力量 02
講師均為各行業(yè)大咖、人士,技術(shù)過硬,講課生趣
教學平臺 03
支持手機端/PC端同步學習,隨時隨地,學習方便快捷
教學實戰(zhàn) 04
注重實踐能力的培訓(xùn),演練多個企業(yè)級真實項目,切實提高學員的職場競爭力
教學模式 05
直播+錄播+作業(yè)打卡,支持錄播反復(fù)學習,項目式、小組PK式多學習模式
教學方法 06
課前準備、課前復(fù)習、課程引入、課程講解、課程總結(jié)、課后測驗、課后作業(yè)


—— 西安大數(shù)據(jù)分析培訓(xùn)班課程大綱 ——


課程大綱課題名稱課程內(nèi)容
前導(dǎo)基礎(chǔ) 數(shù)據(jù)分析入門

1、數(shù)據(jù)分析入門 2、數(shù)據(jù)分析的意義

3、數(shù)據(jù)分析的流程控制 4、數(shù)據(jù)分析的思路與方法

邏輯為先—XMIND

1、xmind簡介與基本使用 2、學習方法課堂案例

3、滴答拼車實戰(zhàn)演練 4、其他思維導(dǎo)圖介紹

專業(yè)展現(xiàn)—PPT

1、專業(yè)展現(xiàn)——PPT 2、基本簡介

3、幾個不得不說的真相 4、經(jīng)驗分享

5、實戰(zhàn)動畫

數(shù)據(jù)分析工具安裝與環(huán)璄配置

1、Excel工具的安裝、配置與環(huán)璄測試

2、Power BI工具的安裝、配置與環(huán)璄測試

3、Tableau工具的安裝、配置與環(huán)璄測試

4、MySQL數(shù)據(jù)庫的安裝、配置與環(huán)璄測試

5、SPSS數(shù)據(jù)挖掘工具安裝、配置與環(huán)璄測試

6、SAS數(shù)據(jù)挖掘工具安裝、配置與環(huán)璄測試

7、Python開發(fā)工具的安裝、配置與開發(fā)環(huán)璄測試

Linux基礎(chǔ)應(yīng)用之大數(shù)據(jù)必知必會

1、虛擬機的安裝配置 2、虛擬機網(wǎng)絡(luò)配置

3、安裝Linux 4、利用SSH連結(jié)Linux

5、Linux基礎(chǔ)命令 6、Linux系統(tǒng)管理

數(shù)據(jù)分析的Python語言基礎(chǔ)

1、python課程的目的 2、使用JupyterLab

3、python數(shù)據(jù)類型 4、元組、列表、字典

5、python分支結(jié)構(gòu) 6、python字符串處理+隨機函數(shù)

7、pthon循環(huán)結(jié)構(gòu) 8、python面向過程函數(shù)操作

9、python面向?qū)ο?/p>

問題定義與數(shù)據(jù)獲取 數(shù)據(jù)分析項目流程

1、問題界定 2、問題拆分 3、指標確定

4、數(shù)據(jù)收集 5、報告方案 6、趨勢預(yù)測

7、數(shù)據(jù)分析 8、趨勢預(yù)測 9、報告方案

問題的定義

1、邊界:明確問題的邊界

2、邏輯:確定業(yè)務(wù)的關(guān)鍵指標和邏輯

3、定性分析與定量分析

分析問題的模型

基于經(jīng)典的模型

1、5W2H

2、SWORT

3、4P管理模型

4、CATWOE

5、STAR原則、波士頓5力模型

基于業(yè)務(wù)的模型

1、用戶畫像

2、 銷售影響因素

3、市場變化因素

4、AARRR流量模型

5、金定塔思考方法

數(shù)據(jù)清洗與處理

1、數(shù)據(jù)科學過程 2、數(shù)據(jù)清洗定義

3、數(shù)據(jù)清洗任務(wù) 4、數(shù)據(jù)清洗流程

5、數(shù)據(jù)清洗環(huán)境 6、數(shù)據(jù)清洗實例說明

7、數(shù)據(jù)標準化 8、數(shù)據(jù)格式與編碼

9、數(shù)據(jù)清洗常用工具 10、數(shù)據(jù)清洗基本技術(shù)方法

11、數(shù)據(jù)抽取 12、數(shù)據(jù)轉(zhuǎn)換與加載

內(nèi)部數(shù)據(jù)的獲取

1、產(chǎn)品數(shù)據(jù) 2、用戶數(shù)據(jù)

3、行為數(shù)據(jù) 4、訂單數(shù)據(jù)

外部公開數(shù)據(jù)

1、開放網(wǎng)站 2、政務(wù)公開數(shù)據(jù)

3、數(shù)據(jù)科學競賽 4、數(shù)據(jù)交易平臺

5、行業(yè)報告 6、指數(shù)平臺

Web網(wǎng)站數(shù)據(jù)抓取

1、財經(jīng)數(shù)據(jù)抓取 2、投資數(shù)據(jù)抓取

3、房產(chǎn)數(shù)據(jù)抓取 4、輿情數(shù)據(jù)抓取

5、娛樂數(shù)據(jù)抓取 6、新媒體數(shù)據(jù)抓取

數(shù)據(jù)查詢與提取 SQL基礎(chǔ)操作

1、建庫 2、建表

3、建約束 4、創(chuàng)建索引

5、添加、刪除、修改數(shù)據(jù)

利用SQL完成數(shù)據(jù)的預(yù)處理

1、缺失值處理:對缺失數(shù)據(jù)行進行刪除或填充

2、重復(fù)值處理:重復(fù)值的判斷與刪除

3、異常值處理:清除不必要的空格和異常數(shù)據(jù)

利用SQL進行業(yè)務(wù)數(shù)據(jù)查詢

1、利用SQL進行簡單的業(yè)務(wù)數(shù)據(jù)查詢

2、利用SQL完成復(fù)雜條件查詢

3、利用多表關(guān)聯(lián)完成復(fù)雜業(yè)務(wù)查詢

4、利用嵌套子查詢完成復(fù)雜業(yè)務(wù)數(shù)據(jù)分析

SQL分析

1、聚合、分組、排序 2、函數(shù)

3、行列轉(zhuǎn)換 4、視圖與存儲過程

業(yè)務(wù)指標統(tǒng)計分析

1、業(yè)務(wù)數(shù)據(jù)表關(guān)聯(lián)查詢及查詢

2、結(jié)果縱向融合

3、?常業(yè)務(wù)需求數(shù)據(jù)寬表構(gòu)建

4、應(yīng)??查詢處理復(fù)雜業(yè)務(wù)

數(shù)理統(tǒng)計基礎(chǔ) 數(shù)據(jù)分析的數(shù)學基礎(chǔ)

1、計算和連續(xù)函數(shù)的性質(zhì) 2、導(dǎo)數(shù)/微分的概念和運算法則

3、積分的概念和運算法則

4、冪級數(shù)、泰勒級數(shù)、傅里葉級數(shù)、傅里葉變換

5、向量的概念和運算

6、矩陣的轉(zhuǎn)置、乘法、逆矩陣、正交矩陣、SVD奇異值分解、特征值

7、行列式的計算和性質(zhì) 8、凸優(yōu)化

Python數(shù)據(jù)分析 基于Numpy庫的Python數(shù)據(jù)科學計算

1、創(chuàng)建數(shù)組 2、切片索引

3、數(shù)組操作 4、字符串函數(shù)

5、數(shù)學函數(shù) 6、統(tǒng)計函數(shù)

基于Pandas庫的Python數(shù)據(jù)處理與分析

1、直方圖:探索變量的分布規(guī)律 2、條形圖:展示數(shù)值變量的集中趨勢

3、散點圖:表示整體數(shù)據(jù)的分布規(guī)律 4、箱線圖:表示數(shù)據(jù)分散性,中位數(shù)

5、提琴圖:分位數(shù)的位置及數(shù)據(jù)密度 6、回歸圖:尋找數(shù)據(jù)之間的線性關(guān)系

7、熱力圖:表未數(shù)值的大小或者相關(guān)性的高低

大數(shù)據(jù)分析 HIVE大數(shù)據(jù)查詢平臺搭建

1、大數(shù)據(jù)概述

2、?數(shù)據(jù)集群 Hadoop 架構(gòu)

3、Hive開發(fā)環(huán)璄搭建

HIVE與MySQL進行數(shù)據(jù)交換

1、從MySQL中導(dǎo)入數(shù)據(jù)到Hive

2、從Hive導(dǎo)出數(shù)據(jù)到MySQL

HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢

1、Hive數(shù)倉

2、HQL 數(shù)據(jù)查詢基礎(chǔ)語法

HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢

1、從MySQL中導(dǎo)入數(shù)據(jù)到Hive

2、從Hive導(dǎo)出數(shù)據(jù)到MySQL

HQL業(yè)務(wù)數(shù)據(jù)指標統(tǒng)計分析

1、分區(qū)表 2、分桶表

3、關(guān)聯(lián)表 4、數(shù)據(jù)查詢

HQL海量數(shù)據(jù)查詢優(yōu)化

1、常?內(nèi)置函數(shù)及開窗函數(shù)

2、特殊類型數(shù)組查詢?式

3、HQL 查詢語句優(yōu)化技巧

建模與數(shù)據(jù)挖掘 數(shù)據(jù)挖掘與分析算法

1、描述統(tǒng)計 2、相關(guān)分析

3、判別分析 4、方差分析

5、時間序列分析 6、主成分分析

7、信度分析 8、因子分析

9、回歸分析 10、對應(yīng)分析

11、列聯(lián)表分析 12、聚類分析

數(shù)據(jù)挖掘工具SPSS

1、從MySQL中導(dǎo)入數(shù)據(jù)到Hive

2、從Hive導(dǎo)出數(shù)據(jù)到MySQL

HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢

1、課程規(guī)劃與簡介 2、數(shù)據(jù)挖掘項目生命周期

3、簡單的統(tǒng)計學基礎(chǔ) 4、用Modeler試手挖掘流程

5、數(shù)據(jù)挖掘的知識類型 6、商業(yè)分析基礎(chǔ)簡介

7、信度分析 8、因子分析 9、回歸分析 10、對應(yīng)分析

11、列聯(lián)表分析 12、聚類分析

數(shù)據(jù)挖掘工具SAS

1、SAS概述:SAS簡介與教育版安裝 2、SAS概述:教育版基本使用

3、SAS編程基礎(chǔ) 4、SAS編程基礎(chǔ)7-循環(huán)

5、SAS數(shù)據(jù)集操作1-合并 6、SAS數(shù)據(jù)集操作2-排序與對比

7、SAS數(shù)據(jù)集操作3-查重與篩選 8、練習-斐波那契數(shù)列

9、練習-百元百雞問題

人工智能預(yù)測算法 人工智能實戰(zhàn)預(yù)測數(shù)據(jù)算法

1、機器學習入門 2、sk-learn機器學習庫

3、預(yù)測算法原理與使用場景 4、算法調(diào)用、參數(shù)設(shè)置

5、特征選擇、特征工程 6、回歸預(yù)測模型實戰(zhàn)

7. 分類預(yù)測試模型實戰(zhàn) 8. 聚類模型實戰(zhàn)

9、集成學習 10、模型優(yōu)化

可視化商業(yè)報告撰寫 商業(yè)智能與可視化分析實戰(zhàn)

案例-1:BI電商數(shù)據(jù)市場分析項目實戰(zhàn)

案例-2:BI電商數(shù)據(jù)客戶分析項目實戰(zhàn)

案例-3:BI可視化關(guān)于公司運營情況的相關(guān)分析

案例-4:基于Tableau的客戶主題對客戶進行合理分群

案例-5:基于Tableau的營銷主題分析如何衡量媒體的營銷價值

案例-6:基于Tableau的保公司索賠情況分析

數(shù)據(jù)可視化報告撰寫

1、數(shù)據(jù)可視化的概念 2、 數(shù)據(jù)可視化的意義

3、 數(shù)據(jù)可視化的對比 4、 數(shù)據(jù)可視化的分類

5、數(shù)據(jù)可視化圖表舉例 6、 數(shù)據(jù)可視化應(yīng)用領(lǐng)域

7、數(shù)據(jù)可視化步驟 8、 數(shù)據(jù)可視化工具梯度

9、圖表呈現(xiàn)流程 10、數(shù)據(jù)報告撰寫

實戰(zhàn):O2O電商平臺功能優(yōu)化效果評估及可視化數(shù)據(jù)分析報告撰寫

1、了解電商業(yè)務(wù)背景

2、以客戶分析為應(yīng)用場景,對數(shù)據(jù)進行加載、清洗、分析及模型建立

3、以貨品分析為應(yīng)用場景,針對品類銷售及商品銷售進行分析

4、以流量分析為應(yīng)用場景,針對流量渠道及關(guān)鍵詞做有效分析

5、根據(jù)業(yè)務(wù)實際背景做輿情分析

6、將分析結(jié)果及建議制成報告進行發(fā)布

商業(yè)分析項目實戰(zhàn) 商業(yè)項目實戰(zhàn)

商業(yè)項目實戰(zhàn)01:電商數(shù)據(jù)分析——分析方式之漏斗模型及數(shù)據(jù)量化

商業(yè)項目實戰(zhàn)02:電商用戶行為與營銷模型實戰(zhàn)

商業(yè)項目實戰(zhàn)03:金融風控模型的構(gòu)建與分析實戰(zhàn)

商業(yè)項目實戰(zhàn)04:展會電話邀約項目數(shù)據(jù)分析實戰(zhàn)

商業(yè)項目實戰(zhàn)05:零售行業(yè)數(shù)據(jù)分析


—— 西安大數(shù)據(jù)分析培訓(xùn)哪家機構(gòu)好?博為峰名師教學 ——


undefined
胡浩

3年數(shù)據(jù)分析行業(yè)開發(fā)工作經(jīng)驗,2年數(shù)據(jù)分析/數(shù)據(jù)挖掘講師教學經(jīng)驗,全棧開發(fā)工程師,C、C++,大前端技術(shù),手機開發(fā)等領(lǐng)域均有所涉獵。尤其擅長復(fù)雜場景下的數(shù)據(jù)處理工作,精通Python爬蟲及各類機器學習算法,近年來專注于 Python,數(shù)據(jù)分析方向的教學與研究工作。教學深入淺出,擅長把復(fù)雜的問題通過生動的示例淺顯的表達出來。授課過程中靈活穿插企業(yè)實際項目案例結(jié)合學生實際認知能力進行場景教學,教學風格輕松,能夠和學員打成一片,深受學員歡迎。
undefined
張瑋

*在線教育機構(gòu)數(shù)據(jù)分析講師,微軟數(shù)據(jù)分析專家,曾留學于日本,原華院數(shù)據(jù) (國內(nèi)從事數(shù)據(jù)分析與大數(shù)據(jù)技術(shù)應(yīng)用的公司) 數(shù)據(jù)分析師,擅長于使用Excel/Power BI/Tableau/SPSS/SAS等可視化、數(shù)據(jù)分析挖掘工具,具有扎實的數(shù)據(jù)分析經(jīng)驗。專注于個人金融與新零售領(lǐng)域的數(shù)字化、客戶智能與風險智能與 商業(yè)智能BI 可視化方向 ,近年來開始接觸并實做于Scratch 與 Python 青少兒編程領(lǐng)域的教學與研究工作。教學細致、耐心,親和力強。教學過程擅長與學員進行互動,能夠通過了解學生的學習信息,機智地關(guān)注教學生成,適時地進行反饋評價,智慧地調(diào)控教學過程,實現(xiàn)教與學的和諧統(tǒng)一。



更多培訓(xùn)課程,學習資訊,課程優(yōu)惠,課程開班,學校地址等學校信息,請進入 西安博為峰教育網(wǎng)站詳細了解
咨詢電話:18581508556   微信:fangxinxue006

如果本頁不是您要找的課程,您也可以百度查找一下:

還沒有找到合適的課程?趕快告訴課程顧問,讓我們顧問馬上聯(lián)系您! 靠譜 的培訓(xùn)課程,省時又省力!

微信訪問

#tel_020#